Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jolanta Holband, ${ }^{\text {a* }}$ Magdalena
 Jurkin, ${ }^{a}$ Grażyna Wójcik ${ }^{\text {a }}$ and Tomasz Holband ${ }^{\text {b }}$

${ }^{\text {a }}$ Institute of Physical and Theoretical Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland, and ${ }^{\mathbf{b}}$ Adeviq - Scientific Proindustrial Independent Institute, Braci Gierymskich 164/27, 51640 Wrocław, Poland

Correspondence e-mail:
holband@kchf.ch.pwr.wroc.pl

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.040$
$w R$ factor $=0.119$
Data-to-parameter ratio $=14.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(5-Chloropyridin-2-yl)-2,3-dihydro-1H-isoindole-1,3dione

The title compound, $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{2}$, crystallizes in the centrosymmetric group $P \overline{1}$ with one molecule in the asymmetric unit. The torsion angle between the phthalimidyl and chloropyridine moieties is about 45°.

Comment

The title compound, (I), a potential substrate for the synthesis of biologically active compounds, forms centrosymmetric triclinic crystals with one molecule in the asymmetric unit. Two rigid groups, phthalimidyl and chloropyridine, are connected in the molecule by a single $\mathrm{C}-\mathrm{N}$ bond with the interplanar angle equal to $43.87(4)^{\circ}$.

(I)

Experimental

The title compound was obtained by melting 2 -amino- 5 -chloropyridine with phthalic anhydride. After reaction and cooling, the solid mixture was dissolved in hot tetrahydrofuran and crystals were grown by slow cooling (m.p. 424-425 K).

Crystal data

```
\(\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{ClN}_{2} \mathrm{O}_{2}\)
\(M_{r}=258.66\)
Triclinic, \(P \overline{1}\)
\(a=7.494\) (1) \(\AA\)
\(b=7.974\) (2) \(\AA\)
\(c=10.303(2) \AA\)
\(\alpha=100.58\) (3) \({ }^{\circ}\)
\(\beta=98.38(3)^{\circ}\)
\(\gamma=107.98\) (3) \({ }^{\circ}\)
\(V=562.00(19) \AA^{3}\)
\(Z=2\)
```

$$
\begin{aligned}
& D_{x}=1.528 \mathrm{Mg} \mathrm{~m}^{-3} \\
& D_{m}=1.530 \mathrm{Mg} \mathrm{~m}^{-3} \\
& D_{m} \text { measured by flotation } \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1144 \\
& \text { reflections } \\
& \theta=3.4-24.5^{\circ} \\
& \mu=0.33 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.38 \times 0.38 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Kuma Diffraction KM4CCD diffractometer ω scans
3767 measured reflections
2342 independent reflections
2244 reflections with $I>2 \sigma(I)$

Received 17 January 2001 Accepted 13 February 2001 Online 19 February 2001

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0757 P)^{2}\right. \\
&+0.1249 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$(\Delta / \sigma)_{\text {max }}=0.035$
$S=1.05$
2342 reflections
164 parameters
H atoms constrained
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.104 (13)
Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{C} 12$	$1.7297(15)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.4192(18)$
$\mathrm{O} 1-\mathrm{C} 8$	$1.2023(17)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.4215(17)$
$\mathrm{O} 2-\mathrm{C} 1$	$1.2038(17)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.385(2)$
$\mathrm{N} 1-\mathrm{C} 9$	$1.3323(19)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.383(2)$
$\mathrm{N} 1-\mathrm{C} 13$	$1.3382(18)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.383(2)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.4113(16)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.382(2)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 13$	$117.28(12)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 7$	$105.66(11)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{N} 2$	$125.01(13)$	$\mathrm{N} 1-\mathrm{C} 9-\mathrm{N} 2$	$115.39(12)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2$	$105.81(11)$	$\mathrm{C} 10-\mathrm{C} 9-\mathrm{N} 2$	$120.16(12)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{N} 2$	$125.38(13)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$120.00(13)$
$\mathrm{C} 9-\mathrm{N} 2-\mathrm{C} 1-\mathrm{O} 2$	$1.8(2)$	$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 9-\mathrm{N} 1$	$-45.09(18)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 9-\mathrm{N} 1$	$136.68(14)$		

Data collection: Kuma KM4CCD Software (Kuma, 1999); cell refinement: Kuma KM4CCD Software; data reduction: Kuma KM4CCD Software; program(s) used to solve structure: SHELXS97

Figure 1
View of the title molecule. The displacement ellipsoids are drawn at the 50\% probability level.
(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

References

Kuma (1999). Kuma KM4CCD Software. Version 1.61. Kuma Diffraction, Wrocław, Poland.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Figure 2
View of the packing of the molecules in the crystal structure of the title molecule.

